Department of Energy § 429.51 § 429.51 Commercial pre-rinse spray valves. (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to commercial pre-rinse spray valves; and (2) For each basic model of commercial pre-rinse spray valves selected for testing, a sample of sufficient size shall be randomly selected and tested to ensure that— (i) Any represented value of water consumption or other measure of water consumption of a basic model for which consumers would favor lower values shall be greater than or equal to the higher of: (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \bar{x} is the sample mean; n is the number of samples; and x_i is the ith sample; Or, (B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where: $$UCL = \overline{x} + t_{.95} \left(\frac{s}{\sqrt{n}} \right)$$ And \overline{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n-1 degrees of freedom (from Appendix A). and (ii) Any represented value of the water efficiency or other measure of water consumption of a basic model for which consumers would favor higher values shall be less than or equal to the lower of: (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \bar{x} is the sample mean; n is the number of samples; and x_i is the ith sample; Or, (B) The lower 95 percent confidence limit (LCL) of the true mean divided by 0.90, where: $$LCL = \overline{x} - t_{.95} \left(\frac{s}{\sqrt{n}} \right)$$ And \overline{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n-1 degrees of freedom (from Appendix A). - (b) Certification reports. (1) The requirements of §429.12 are applicable to commercial pre-rinse spray valves; and - (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information: The maximum flow rate in gallons per minute (gpm), rounded to the nearest 0.1 gallon. [76 FR 12451, Mar. 7, 2011; 76 FR 24779, May 2, 2011, as amended at 78 FR 62986, Oct. 23, 2013] ## § 429.52 Refrigerated bottled or canned beverage vending machines. (a) Sampling plan for selection of units for testing. (1) The requirements of - §429.11 are applicable to refrigerated bottled or canned beverage vending machine; and - (2) For each basic model of refrigerated bottled or canned beverage vending machine selected for testing, a sample of sufficient size shall be randomly selected and tested to ensure that— - (i) Any represented value of energy consumption or other measure of energy consumption of a basic model for which consumers would favor lower values shall be greater than or equal to the higher of: - (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \overline{x} is the sample mean; n is the number of samples; and x_i is the ith sample; Or, (B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where: $$UCL = \overline{x} + t_{.95} \left(\frac{s}{\sqrt{n}} \right)$$ And \overline{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n-1 degrees of freedom (from Appendix A). and (ii) Any represented value of the energy efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be less than or equal to the lower of: (A) The mean of the sample, where: